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Compliance Control of Redundant
Robot Manipulators

This work presents a control methodology for compliant motion in redundant robot
manipulator#. This control approach takes advantage of the redundancy in the
robot’s degrees of freedom: while a maximum six degrees of freedom of the robot
control the robot’s endpoint position, the remaining degrees of freedom impose an
appropriate [force on the environment. To verify the applicability of this control

method, an active end-effector is mounted on an industrial robot to generate redun-
dancy in the degrees of freedom. A set of experiments are described to demonstrate
the use of this control method in constrained maneuvers. The stability of the robot
and the environment is analyzed.

1 Introduction

Robotic manipulations fall into two categories; un-
constrained and constrained maneuvers [1, 2, 3, 4]. In uncon-
strained maneuvers, the robot moves freely in its workspace
without contacting the environment. In constrained
mangeuvers, such as robotic deburring [7], the robot moves in
its workspace in such a way that the environment continuously
exerts a dynamic or kinematic constraint on the robot motion.
If a position controller is used in constrained maneuvers, the
robat-environment interaction forces are treated as disturb-
ances and the controller rejects them, thus causing mare in-
terac¢tion forces. The consequences of this type of interaction
are faturation, instability, and physical failure. Therefore the
interaction forces in constrained maneuvers must be accom-
modated rather than resisted. Various methodologies for
development of compliant motion exist where the measure-
ment and feedback of the contact force is of paramount im-
portance [9-15]. Reference [14] gives a thorough review and
comparison of these methodologies.

The manipulator is assumed to have two mechanical parts:
the primary manipulator and the secondary manipulator. The

ary manipulator, imposes a desired force onto tﬁe en-
vironment (Fig. 1). Even though the secondary manipulator

. In fact, the goal is to use the secondary manipulator at a
partjcular and fixed configuration relative to the last liLnk of
the primary manipulator. Figure 1 shows several configura-
tions of the primary robot where the secondary manipulator
has a fixed orientation.
If|the joints of the secondary manipulator are mechanically

"The secondary manipulator must be small in comparison with the primary
manipulator. This is of practical imporiance to minimize the primary
manipulator’s pay load.
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locked, the secondary manipulator can be considered to be a
rigid body connected to the last link of the primary
manipulator. If a regulator controller is placed on each joint
of the secondary manipulator, the compliance of the sec-
ondary manipulator can be governed by adjusting the loop
gains on the servo motors. If the loop gains on the servo
motors are small, the system exhibits compliancy in response
to forces imposed at its endpoint. If the loop gains are large,
the secondary manipulator is very stiff electronically.

This paper describes a stable control method for develop-
ment of compliant motion on the seconday manipulator. Sec-
tions 2 and 3 describe the unstructured dynamic model of the
system. Sections 4 and 5 are dedicated to the control and
stability criterion. Section 6 proves the integrity of the control
approach via a set of experiments.

2 Unstructured Modeling of the Secondary
Manipulator

The primary manipulator is assumed to have a trajectory
controller for positioning its endpoint (i.e., the base of the

Fig. 1 Various configurations of the primary manipulator where the
secondary manipulator has & fixed orientation relative to its base
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secondary manipulator). Several linear and nonlinear control
methods can be used to develop this trajectory controller.
However, the concern here is the control and modeling of the
secondary manipulator. The secondary manipulator motors
are assumed to “have velocity controllers- since most servo
motors have rate controllers. In general, a robotic system with
a velocity controller has a velocity that is a dynamic function
of its input vector,? e, and of the force,-d, imposed-at its end-
point. The velocity controller for the secondary manipulator is
assumed to have zero velocity input in the neighborhood of a
particular configuration of the secondary manipulator. Thus,
the secondary manipulator is not used for. maneuvering parts,
but is used at:a particular known configuration. Therefore,
the dynamic. behavior of the secondary manipulator is ex-
pressed in terms of linear transfer function matrices, not to
simplify ‘the problem; but because of the nature of its opera:
tion. Let G and S, be two transfer function matrices that
define the velocity deviation from zero ‘of the secondary
manipulator’s.endpoint.

x(jw) =G (jw)e(juw) + Sojw)d (jo) - wi

1)
where:

x:  nx1 velocity vector of the secondary manipulator’s end-
point in a coordinate frame attached to the last link of the
primary manipulator '

e: .nx1 input velocity vector

d: - nX 1 force vector acting on the endpoint

G: closed-loop velocity transfer function matrix from the in-
put velocity vector, e, to the endpoint velocity, x

Sp: closed-loop sensitivity transfer function matrix from
forces, d, to the endpoint velocity, x

n: the degrees of freedom of the secondary manipulator.

The type of velocity controller used is not important at this
stage. Generally, systems with velocity controllers are not in-
finitely stiff in response to imposed forces (disturbances), d.
The motion of the secondary manipulator’s  endpoint in
response to imposed forces is caused either by structural com-
pliance in the secondary manipulator or by compliance in the
velocity controller.- For a “‘good” velocity controller, S, is
“small”’.®> Nondirect drive systems with large gear ratios
develop “‘small’’ sensitivity to imposed forces.

3 Dynamic Behavior of the Environment

If one point on the environment surface is-displaced as
much as-y; the force required-for such a task is defined by f
(Fig. 2).

, TUw) =E(uw)y(w) )]
E(jw) is a square transfer function matrix that maps the
amplitude of the displacement vector, y, to the amplitude of
the contact force, f. Validation of equation {2) can be achieved
by analyzing the relationship of the force and displacement of
a spring as a simple model of the environment. E is the spring
stiffness. (Hereafter, the argument (jw) is dropped.) The rele-
vant directions of the environment dynamics are those that
constrain the workspace of the secondary manipulator.
Therefore, E is an n x n matrix. E isa singular matrix when the
robot interacts with the environment only in some directions.
For example, in sliding on a frictionless surface, the secondary
manipulator is constrained by the environment only in the
direction normal to the surface.

2The input commands to the secondary manipulator-can be a set of voltages
to the amplifiers, currents to the servo valves, or a-set of numbers to the
computer.

“Small”’ means that the maximum singular value of the matrix is a small
number. This concept can be extended to express the “large’’ size of a matrix us-
ing its minimum singular value. See footnote 5 for a definition on singular
values.
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Fig. 2 When_ the base of the secondary manipulator is moved as
muchn as xg, its endpoint moves as much as x relative to its base such
that y=xqg +x

Fig. 3 _Dynamic behavior of the secondary manipulator in contact with
the environment. The Laplace operators of the transfer functions have
been eliminated in all the biock diagrams.

Fig. 4 The closed-loop architecture

4 The Architecture of the Closed-Loop System

Suppose the secondary manipulator, described by .the
dynamic equation (1), is in contact with an environment given
by equation:(2).. The block diagram of Fig. 3 shows how.the
two systems .interact when they are in contact. Note that
f= —d. The secondary manipulator motion relative to its base
(i.e., the last link of the primary manipulator) is represented
by x. If the motion of the secondary manipulator base in a
global Cartesian coordinate frame is characterized by a vector
Xg, then the absolute motion of the secondary manipulator
endpoint; y, is x, +x. When the secondary manipulator is in
contact with the environment, the primary manipulator must
not be maneuvered along those directions in which the sec-
ondary manipulator has no degrees of freedom. Thus, the vec-
tor x, must be in the workspace of the secondary manipulator
and is an nX 1 vector.

Figure 4 shows the proposed closed-loop control architec-
ture for producing secondary-manipulator compliancy.* The
position deviation of the secondary manipulator is fed back to

4In some applications; the endpoint will only apply a unidirectional force to
the environment. For example, in robotic grinding, the manipulator can only
push the tool into the surface. If we consider a positive f; for “‘pushing’’ and a
negative f; for “pulling”’, the active end-effector and the environment are then
in contact with each other along those directions where f; >0 fori=1, ..., n.
On the other hand, in some applications such as screwing in a bolt, the interac-
tion force can be positive and negative. This: means that the active end-effector
can have clockwise and counterclockwise interaction torque. The nonlinear
discriminator block diagram in Fig. 3 is drawn with a dashed line to illustrate the
above concept. Note the natural feedback in the system; the force developed in
the system due to the interaction of the secondary manipulator and the environ-
ment affects. the secondary manipulator motion in a feedback fashion.
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the system via the compensator K, a transfer function matrix
that |operates on the endpoint position. This creates a
regulator controller for the secondary manipulator around its
nominal configuration. This system has an *‘inner”’ loop and
an ‘‘outer’’ loop. The inner loop is the ‘‘natural’’ feedback
betwden the contact force and the environment. The outer
loop |is the controlled feedback. When the secondary
manipulator is not in contact with the environment, the
closed-loop system reduces to the outer loop. This is a sihple
closed-loop positioning system with an input position com-
mand| equal to zero.

If the secondary manipulator’s base is moved by x, and the
seconflary manipulator encounters the environment (see Fig.
2), the contact force can be computed from equation (3).

f=U+E(sI+GK,) 'S]"E x, 3)

In mqgst manipulation tasks such as deburring or grinding, the
robot{manipulator contacts very stiff environments where E is
‘““large.”” When E approaches infinity in the singular value
sense, the interaction force between the secondary
manipulator’s endpoint and the environment is given by equa-
tion (4).

=8, UsI+G K,)x, 4)

This equation calculates the contact force on the environment
when |the secondary manipulator base moves towards the en-
vironment as much as x,. Given G and S, over a particular fre-
quendy range, a compensator K, can be found to arbitrarily
shape| the system impedance, So" sI+GK,). Under DC
conditions where s =0 and G =1, the stiffness of the systém is
expressed by equation (5):

S=8,"1K,(0)x, (%)

where x; is the base position determined by the position of the
primary manipulator. When K|, is a transfer function with a
large magnitude in a particular direction, the contact fovrce is
large |n that direction, while a small value for K, leads‘to a
small |force.

5 Stability

In this section, a sufficient stability condition is given for
the clpsed-loop system shown in Fig. 4. By satisfying this con-
ditior], the designer can select the appropriate compensator K,
which guarantees system stability and develops compliancy as
defined by either equality (3) and (4). The Multivariable Nyqu-
ist Criterion is used to derive the stability condition in Appendix
A. The sufficient condition for stability condition for stability
is given by inequality (6).

Omax(GK ) < 0 (5T + SoE) for all we(0,00) - (6)
or by @ more conservative condition in inequality (7):

for all we(0,0) (7)

; <
iman ) = e ST T 85E) )
wherd o,,,, indicates the maximum singular value® of a matrix.
The above condition guarantees stability of the robot when it
is in contact with the environment. If the compensator X,
does pot satisfy this condition, no conclusion can be made
about the system stability. When n=1, the sufficient cdmdl-
tion for stability is given by inequality (8).

IGK,| < Is+S,El  for all we(0,0) - ®

Since|G =1 within (0,w,), where w, is the velocity contr‘oller
bandwidth, the sufficient condition is:

’The maximum singular value of a matrix K, 0., iefin
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The Active End-Effector

Fig. 5 The active end-efiector mounted on a primary manipulator
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Fig. 6 The active end-effector at its nominal position

IK,1 < Is+SeEl  for all we(0,) ©)

One important class of manipulations places the robot in
contact with a very rigid environment. Equations (7), (8), and
(9) show that the system is always stable if E is very *‘large’’ in
the singular value sense and S, #0. In this case, the gain of the
feedback compensator K, can be chosen to be large enough to
guarantee stability. Note that, in practice, K, cannot be
chosen as an integrator because an integrator has an infinite
magnitude at DC which leads to saturation and un-
boundedness of the contact force when an infinitely rigid con-
straint is imposed on a servo system.

When the environment is infinitely rigid, a large stability
range gives the designer freedom to shape the force function
without being confined by the stability condition. This is the
advantage of this compliance control method in comparison
with methods that use force sensors.

6 An Experimental Prototype Active End-Effector
and Its Dynamic Model

To verify the applicability of this control method, a two-
degree-of-freedom active end-effector is mounted on an in-
dustrial robot to generate redundancy in the robot’s degrees of
freedom. Several experiments are presented. to verify the
theory developed in the previous sections. The device utilized
for these experiments is a planar, five-bar linkage [5] which is
driven by two direct drive, brushless DC motors (Moog Inc.,
Model 303-002). Both of the active end-effector motors are
fixed to the last link of the primary manipulator (Fig. 5). Two
PWM amplifiers (Moog Inc., 152-200 Series) interface the
motors to the analog velocity controllers. An IBM/AT
microcomputer is the main controller providing the compen-
sator K.

Figure 6 shows the active end-effector mechanism where the
endpoint can be moved in a planar space via two motors. The
end-effector operates in the neighborhood of the configura-
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Fig. 7 The experiment and simulation of the first motor’s closed-ioop
velocity transfer function, G’ (s)

tion shown in Fig. 6, where all the links are orthogonal to each
other. In this configuration, both the Inertia matrix and the
Jacobian matrix are constant and diagonal. This leads to an
uncoupled dynamic equation for the active end-effector at its
nominal configuration, enabling motor 1 to move the end-
point in the x, direction and motor 2 to move the endpoint in
the x, direction.

The control analysis in previous sections requires a velocity
controller as the lowest level of control. Since the dynamic
behavior of the active end-effector is uncoupled in its nominal
configuration, separate control loops are needed for each
motor. Motor 1 drives the endpoint in the normal direction
while motor 2 drives the endpoint in the tangential direction.
The Jacobian matrix relating the small perturbations of 6, and
8, to the perturbations of x, and x, is given by the following

equation [S].
T —1.768 0
J= ]
0 —0.906

Using engineering data (inductance and resistance, shaft and
links moments of inertia, and torque constants for the servo
motors), the theoretical closed-loop transfer function for each
motor is derived in equations (11) and (12). The choice of
compensators in the development of the closed-loop velocity
controller is not of importance in this analysis. However, these
compensators are designed so that the output velocity follows
the input command as fast as possible while the system re-
mains stable in the presence of all unmodeled dynamics. These
transfer functions are called G’, (s) and G’, (s) because they
are calculated and measured in the joint angle space. Using the
Jacobian in equation (10) results in equations (11) and (12)
which present the closed-loop velocity in the global coordinate
frame.
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Fig. 8 The experiment and simulation cf the second motor’s closed-
loop velocity transter function, G’ (s}
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Fig. 9 The experimental apparatus for measuring the sensitivity
transfer tunction

where:

Vi and Vi,: the input velocity cormmand for each motor
shaft in Volts; V,,,; and V,,: the output voltage representing
the angular velocity of each motcr shaft. One volt of
tachometer output represents 0.0191 rad/s of the shaft
angular velocity.

The closed-loop transfer functions (11) and (12) are verified
experimentally in the frequency domain. Figures 7 and 8 show
the theoretical and experimental Bode plots of the closed-loop
velocity transfer functions for both motors. ]

The theoretical sensitivity transfer functions for motors 1
and 2 are derived in equations (13) and (14) using the data
from the engineering drawings. The notations S’ (s) and
S’ o2 (5) represent the sensitivity in the joint coordinate frame
as opposed to Sy, (s) and S, (s) in the global Cartesian coor-
dinate frame. Later, the Jacobian of equation (10) will be used
to arrive at the sensitivity functions in global coordinate
frame.

. Volts
: | o) an
( ( s ¢ R ]“ . Volts
964.28 “) 7105+ )\ Gosomes i HY
%
G’y (s)= —"2 =1.346
Xy
+1)
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870, (5) and S’ (5): closed-loop sensitivity transfer functions
from the external torques, T, and, T, to the angular velo-

_ city, ©, and 9,.

O, and 6,: the velocity developed on the ith motor

T, and T,: the external torque applied on the ith motor shaft.

To verify experimentally the sensitivity of the closed-loop
velocity control system to external torques (equations ( 13) and
(14)), the apparatus in Fig. 9 is used. An eccentric mass is
mounted on the tool bit. The input excitation is supplied by
the rotation of this mass. The rotation of the mass generates a
sinusoidal torque disturbance at the corresponding motor
shaft with a frequency equal to the frequency of the rotation
of the mass. Figures 10 and 11 show the Bode plots of the
theoretical and experimental sensitivity transfer functions.

7 Compensator Design

After the closed-loop velocity transfer functions and the
sensitivity transfer functions are determined, the position
compensators, K, and K, for each motor are designed.
Since the active end-effector is used with a very hard environ-
ment, the system is stable for a wide selection of K, and X ,,,
in accordance with the results given in section 5. K, and K,

are chosen using equations (15) and (16).

! s

Tt

K, (s) =30 ———— (15)
§
-+

+1

K, (s) =502 —— (16)
<
al

6

The choice of K, and K, depends on the desired system
impedance as defined in equation (4). The selection of a
specific K, and K, enables the designer to shape ;he
magnitude and bandwidth of the active end-effector im-
pedance. The transfer functions in equations (15) and (16), for
example, yield a flat impedance equation (4) for a wide fre-
quency range.

When the base of the active end-effector is moved by x,
toward the environment in the global coordinate frame, the
comac‘t forces (equation 4), are equal to that given by equation
an: |

f

5+G K,
Sor

S+ Gzsz
SOZ

= Xq and f, = X2 a7
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14

Note that x,, and x, are the inputs to the system and the con-
tact forces, f, and f,, applied on the environment by the active
end-effector are the outputs of the system. By assigning dif-
ferent position commands to the base of the active end-
effector and by maintaining complete control on K p1 and Kp
in equation (17), a designer can keep the contact forces in a
desired range. Also note that the active end-effector behaves
like a system that accepts a set of positions as inputs and
reflects a set of forces as output. This is a fundamental

10
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Fig. 10 Sensitivity transfer function for motor 1, 8§'g1(s)
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Fig. 11 Sensitivity transfer function for motor 2, S’ ¢2(s)
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Fig. 12 Endpoint sensitivity (1/impedance) in the normal direction (first
motor)

characteristic of impedance control which differentiates it
from admittance control. Equation (17) will be verified ex-
perimentally in both directions. The frequency response ex-
periment must be carried out by imposing sinusoidal input
positions on the end-effector when it is in contact with a rigid
wall. This requires the precise position of the active end-
effector base, x, and xg. However, it is possible to verify
equation (17) with a more convenient method when the active
end-effector is not in contact with any environment.

When the active end-effector is not in contact with its en-
vironment, the relationship between the external force, d, and
the endpoint position of the active end-effector, x, in the
global Cartesian coordinate frame is given by equation (18).
(This is the closed-loop positioning controller sensitivity.)

x=(sI+G K,) 'Syd 13
Since the active end-effector is dynamically uncoupled around
its nominal position, equation (18) (in each direction)
becomes:

Soy Soz

ol s+G,Kp,d % 5+G,K,, 2 (19

where:

d, and d,: the input excitation force applied at the endpoint of
the active end-effector along the x; and x, directions. (1bf)

x; and Xx,: the translational displacement of the active end-
effector’s endpoint from its nominal position (in)

Comparing equations (17) and (19) reveals that, for measur-
ing (s+G,K,)/S, and (s+G,K;,)/Sy, (given by equation
(17)), one can use the same experimental set-up (Fig. 9)
employed to measure the closed-loop sensitivity,
So1/(s+ G K,) and S /(s + G,K ) (given by equation (19)).
In other words, the closed-loop system sensitivity in response

)

-
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Fig. 13 Endpoint sensitivity (1/impedance) in the tangential direction
(second motor)

to external forces (equation (19)) is measured rather than
measuring the system impedance in constrained maneuvers
(equation (17)). In general, for linear systems, the impedance
function is equal to the inverse of the sensitivity function. For
the experimrental set-up (Fig. 9), the following transfer func-
tions give the sensitivity of each motor:

0, S’ o1 (8)

T, 5+ G, (5)K, (9)

9, S’ 02 (8) / rad )
T T+ Ga (5)K »(s) \Vibfin

where 6, and 6, are the small angular perturbations of the
motor shafts in the neighborhood of their nominal positions
and T, and 7T, are the imposed torques at each motor shaft.
Using the Jacobian (equation 10) results in the following equa-
tions:

and

(20)

X 2.9
a4 =(—1.768) T,
—(— 2 (I
=(-1.768) (s+Gl(s)Kp,ds))<lbf @D
X o 2. 92
(—0.906) T,
S’ (s) | in
—(_ 2 02 o
_’( 0.906) (5+ G, (8)K 2 (5)) lbf) 22)

where d, and d, are the forces applied at the active end-
effector’s endpoint. Substituting equations (11) (12), (13) (14),
and (15) (16) into equation (21) (22) results in equations (23)
and (24). They represent the endpoint sensitivity of the active
end-effector along the x, and x, directions.

o A \/ v S5
X, 0260z +1) (gsow 1) s ) s +) s ) s Y
d, s 52 N \ /S /S N/ oS
(‘ 951.62 ) 182990.6  321.07 A 36.69 1) (567 ) 726 * )
e ()
il T 1 lbf
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An experiment is run to measure the active end-effector’s
endpoint sensitivity (equations (23) and (24)). The known or
available quantities for measurement are: (i) the excitation
force (the centrifugal force due to rotating) and (ii) the angular
position of the motor shaft which is eventually converted into
the active end-effector’s endpoint displacement. The ex-
perimental data and the theoretical simulation of the endpoint
sensitivity are presented in Figs. 12 and 13. With the ap-
propriate selection of K, (s) and K, (s), the designer can
shape the magnitude and bandwidth of the desired target im-
pedance. The plots in Figs. 12 and 13 show that the sensitivity
in the normal direction (x,) is larger than the sensitivity in the
tangential direction (x,). However, the architecture of the ac-
tive end-effector in Fig. 6 shows that the system naturally has
a larger inertia (and consequently, smaller open loop sensitivi-
ty) in the x, direction. This shows that one can shape the im-
pedance of the system arbitrarily so the system, in the closed-
loop form, has an impedance dramatically different from its
natural open loop impedance. The strength of this alteration
in the impedance magnitude and bandwidth is limited by the
unmodeled dynamics in the system [4, 6].

Summary and Conclusion

ﬂ-lis paper describes a control method for development of
compliant motion without using any force sensors. This con-
trol method benefits from redundancy in the robot degrees of
freedom: the extra degrees of freedom in a particular robotic
systém can impose forces on the environment. The stability of
the gystem and the environment is studied and a sufficient con-
dition for stability is derived.
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APPENDIX A

The objective here is to find a sufficient condition for the
stability of the closed-loop system shown in Fig. 4 by using the
Multivariable Nyquist Criterion [8]. Equation (Al) can be
derived from Fig. 4:

x=—~(sI+S,E+GK,) "1S,E x, (AD

If K, =0, the block diagram shown in Fig. Al reduces to the
system in Fig. 3, which is a stable velocity-controlled active
end-effector in contact with its environment.

Assume the following conditions are satisfied:

1) The closed-loop system in Fig. A1 is stable if K. p»=0. This
condition simply states the stability of the system in Fig. 3.

2) K, is a stable linear transfer function matrix. This im-
plies that the number of unstable poles of (s — I+ SoE+GK,
should be equal to the number of unstable poles of
(s—1I+S,E.

3) The number of poles on the jw axis of loops
(s— DI+ S,E+GK, and (s—1)I+ SyE are equal. This condi-
tion states that K, should not have any pole on the jw axis.

Since the system in Fig. A1 is stable when K » =0, deriving a
sufficient condition for stability of the closed-loop system re-
quires investigation of the influence of GK »- According to the
Nyquist Criterion, the system in Fig. Al remains stable if the
clockwise encirclement of det(s/+S,E+GK,) around the
center of the s-plane is equal to the number of unstable poles
of the loop transfer function (s— 1)/ + Sy E + GK, - Taking into
account conditions 1, 2, and 3 for the stability of the closed-
loop system, det(s/+ SyF + GK ») must have the same number
of encirclements around the center of the s-plane that
det(sI+SgE) has. This is true because det(s/—s,E+ GK )
and det(s/ + SyE) have the same number of unstable poles. A
sufficient condition which guarantees the equality of the
number of encirclements of det(s/+ S,E+GK,) and
det(s/+ SpE) is that the det(s/+SyE+GK,) does not pass
through the origin of the s-plane for all possible non-zero
finite values of K, or:

!
D)
v

|
1 \
—_

E+GK,

ee— {5-1]1+ S

Fig. A1 Modified block diagram of the closed-loop control system
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det(sI+SE+GK,)#0  forall we(0,) (A2) X.) or all
=
A sufficient condition that guarantees the above inequality " 7' Gma ((SI+SoE) ~1G) or all we(0,0) vy

is: and for systems with one degree of freedom (n= 1), the suffi-
Omax (GK,) < 0pyin (ST + SoE) for all we(0,00) (A3) cient condition for stability is given by:

or more conservatively: IGK, | < Is+S,E! for all we(0, ) (AS5)
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