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J. Guo This work p~esents a control methodology for compliant motion in redundant robot
manipulatorf. This control approach takes advantage of the redundancy in the
robot's degrtes of freedom: while a maximum six degrees of fre,~dom of the robot
control the 10bot's endpoint position, the remaining degrees of freedom impose an
appropriate~ orce on the environment. To verify the applicability of this control
method, an ctive end-effector is mounted on an industrial robot to generate redun-
dancy in the degrees of freedom. A set of experiments are described to demonstrate
the use of this control method in constrained maneuvers. The sta'bility of the robot
and the envi onment is analyzed.
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locked, the secondary manipulator can be <:onsidered to be a
rigid body connected to the last link of the primary
manipulator. If a regulator controller is placed on each joint
of the secondary manipulator, the compliance of the sec-
ondary manipulator can be governed by a,djusting the loop
gains on the servo motors. If the loop g:ains on the servo
motors are small, the system exhibits compliancy in response
to forces imposed at its endpoint. If the loop gains are large,
the secondary manipulator is very stiff electronically.

This paper describes a stable control method for develop-
ment of compliant motion on the seconday manipulator. Sec-
tions 2 and 3 describe the unstructureddyn:amic model of the
system. Sections 4 and 5 are dedicated to the control and
stability criterion. Section 6 proves the integrity of the control
approach via a set of experiments.

2 Unstructured Modeling of the Secondary
Manipulator

The primary manipulator is assumed to have a trajectory
controller for positioning its endpoint (i.e.., the base of the

1 ntroduction
I

R botic manipulations fall into two categOrie
~ un- con. trained and constrained maneuvers [1,2,.3,.4]. In ncon-

stral ed maneuvers, the robot moves freely m Its wor space

wit out contacting the environment. In const ained

ma uvers, such as robotic deburring [7], the robot mo~es in

its orkspace in such a way that the environment continuously

exer s a dynamic or kinematic constraint on the robot mbtion.

If a osition controller is used in constrained maneuve~s, the

rob t-environment interaction forces are treated as di~turb-

anc and the controller rejects them, thus causing m
~ re in- tera tion forces. The consequences of this type of inter ction

?re atu!ation, inst.ability, an.d physical failure. Therefore the

mte action forces m constraIned maneuvers must be a com-

mo ated rather than resisted. Various methodologi s for

dev lopment of compliant motion exist where the me ~ sure- men and feedback of the contact force is of paramou t im-

port nce [9-15]. Reference [14] gives a thorough revie and

com arison of these methodologies.

T e manipulator is assumed to have two mechanical parts:

the rimary manipulator and the secondary manipulato~. The

pri ary manipulator is used solely as a positioning s~stem.

The secondary manipulator, 1 mounted on the endpoint ~f the

pri ary manipulator, imposes a desired force onto t~e en-

viro ment (Fig. 1). Even though the secondary maniP ~ lator hol s the tool, it is not meant to be used for maneuveri g ob-

ject .In fact, the goal is to use the secondary manipulat r at a

part cular and fixed configuration relative to the last ljnk of

the rimary manipulator. Figure 1 shows several configura-

tion of the primary robot where the secondary manipulator

has fixed orientation.

If the joints of the secondary manipulator are mechaI)ically

~ T e secondary manipulator must be small in comparison with the ~rimary
mani ulator. This is of practical importance to minimize the rimary
mani ulator's pay load.
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Fig. 1 Various configurations of the primary manipulator where the
secondary manipulator has a fixed orientation rel,ative to its base
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Fig. 2 When the base of the secondary manipulator is moved as
muchn as Xo. its endpoint moves as much as x relative to its base such
that y=xo +x

secondary manipulator). Several linear and nonlinear control
methods can be used todeyelop this trajectory controller.
However, the concern here is the control and modeling of the
secondary manipulator. The secondary m~ipulatormotors
are assumed to have velocity controllers since most servo
motors have rate controllers. In general, a robotic system with
a velocity controller has a velocity that is a dynamic function
of its inputvector,2 e,andof the force,d,imposedat its end-
point. The yelocity controller for thesecondarym~nipulator is
assumed to have zeroyelocityinput in the neighborhood of a
particular configuration of the secondary manipulator. Thus,
thes.econd¥ymanip~latoris not used f<;,rma~~~verin~ p~rts.
but IS used at a partIcular known configuratIon. Therefore;
the dynamic behavior of the secondary manipulator is ex-

slmplifytheproblem,but because 'of the nature of Its opera.;,
tio~., Let G and .So, ,be .tw.o transferf~~cti9n~~t:ices th~t
defIne the velocIty devIatIon from z~rQ~f, the' secondary
manipulator's endpoint.., 'xU",) =GU"')eU~)+SoU",)d(j(,j)~] (1)

, , " , .

where:
.; ,x: n~lveloclty vector of the secondarymampulator's end,.

pojntin a~o~rdinate frame attached to thelast.iinkoftlle

pnm~ry~ampulatQr
e: nx 1.iQPutvelocityvector
d: nx]!Qrcevector acting~ntheen4point
G: closed-loop velocity transfer function matriX from the in-

put velocity vector, e, to the endpoint velocity, .i
So: closed-loop sensitivity transfer function matrix from

forces, d, to the endpoint velocity,.i
n: the degrees of freedom of the secondary manipulator.

Thelype of velocity controller used is not important atthis
stage, Generally ,systemswith velocity controllers are not in-

The motion of thesecoQdary manipulator's endpoint in
resIJonseto imposed lorc~siscaused either bystriiCiuratcom-
plianceln thesecoridary manipulator or by compliance in the
velocity controller. For a "good"velocity controller, S'
"small".3 Nondirectdrive systems with1argegearra~i~~-
develop "small" s~nsitivityto imposed forces.

3 Dynamic Behavior of the Environment

If one point on the environment surface is displaced as
muchasy, the force required 'for such a task is defined byf
(Fig. 2).

fU~) = EU",)y U",) (2)

E U"') is a square transfer function matrix that maps the.
amplitude of the displacement vector, y, to the amplitude of
the contact force..!: Validation of equation (2) can be achieved
byanalynng the relationship of ..the force and displacement of
a spring as a simple model of the environment. E is the spring
stiffness. (Hereafter, the argument U"') is dropped.) The rele-
vant directions of the environment dynamics are those that
constrain the workspace of the secondary manipulator.
Therefore, E is ann x n matrix. Eisa singular matrix when the
robot interacts with the environment only in some directions.
For example; in sliding on a frictionless surface, the secondary
manipulator is constrained by the environment only in the
direction normal to the surface.

4 The Architecture of the Closled-LoopSystem

Suppose the secondal;"Y manipulator, described by the
dynamic equation (1), is in contact\\'ith an environment giyen
by equation (2).. The block diagram of Fig, 3 shows how the
two systems interact when they are in contact. Note that
f = -4. The secondary manipulator imotionTelative to its base
(i.e, ,the last 1inkof the primary manipulator) is represented
by x.. l.f the motion of the seconda:ry manipulator base ina
global Cartesian coordinate frame is characterized by a vector
xc, then the absolute motion of .the secondary manipul.ator
endpoint,y, isxo+x.. When the secondary manipul.atoris in
contact with the environment, the primary manipulator must
not be maneuvered along those directions in which the sec-
ondarymanipulatorhas no degrees clffreedom. Thus,thevec-
torxo must be in the workspace of the secondal;"Ymanipul.ator
and is annx] vector.

Figure 4 shows the proposed clos,ed-ioop control architec-
ture for producing secondaqmanipul.ator compliancy.4 The
position deviation.of the secondary rllanipulator..isfed backJ.o

~some applications. the endpoinl will only apply a unidirectional force 10
the environment. For example, in robotic grinding, the manipulator can only
push the tool into the surface. If we consider a positive!; for "'pushing"and a
negative!; for"pulling", the active end-effector and the erivironmentare then
in contact with each other along those directions where!; >0 for i =1,.. .,n.
On1he other hand,jnsome applications such a:s screwing in a bolt, theinterac-
tion force can be positive and negative. This means that the active end-effector
can have clockwise and counterclockwise interaction torque. The nonlinear
discriminator block diagram in Fig. 31sdrawn with a dashed1ine10 illustrate1he
above concept. Note1henatural feedback in the system; the force developed in
the system due to the interaction of the second~Lry manipulator and 1he environ-
ment affects the secondary manipulator motion ina feedback fashion.

--z:r-he input commands to the secondary manipulator can be a set of voltages
to the amplifiers, currents to the servo valves, or a set of numbers to the
computer.

3"Small" means that the maximum singular value of the matrix is a small
number. This concept can be extended to express the "large" size of a matrix us-
ingits minimum singular value. See footnote 5 for a definition on singular
values.

654 I Vol. 112, DECEMBER 1990 Trarlsactions of the ASME



the s stem via the compensator Kp, a transfer function matrix
that perates on the endpoint position. This creates a
regul tor controller for the secondary manipulator around its
nomi al configuration. This system has an "inner" loop and
an " uter" loop. The inner loop is the "natural" feedback

betw en the contact force and the environment. The outer
loop is the controlled feedback. When the secondary
mani ulator is not in contact with the environment; the
close -loop system reduces to the outer loop. This is a simple
close -loop positioning system with an input position com-
mand equal to zero.

If t e secondary manipulator's base is moved by Xo and the
seco ary manipulator encounters the environment (see Fig.
2), t contact force can be computed from equation (3).

j=[I+E(sl+GKp)-ISo]-IExo (3)
In m st manipulation tasks such as deburring or grinding, the
robot manipulator contacts very stiff enviJlonments where E is
"larg ." When E approaches infinity in the singular value
sense the interaction force between the secondary
mani ulator's endpoint and the environment is given by equa-
tion ( ).

Motor!

~4
\~~.~

Motor 2

~6,

x too!
~ r'@J---'

tangential ~ "A h . 1 ..direction I t t e nomlna posItIon:
,X, e, -gO'

normal e, -90'

direction e .-160'

Fig. 6 The active end.effector at its nominal position

/=80-1(5 I+G Kp)xo (4)

This quation calculates the contact force on the environment
when the secondary manipulator base mO\'es towards the en-
viron ent as much as xo. Given G and 80 over a particular fre-
quen y range, a compensator Kp can be found to arbit~arily
shape the system impedance, 80-1 (5 I+G Kp). Unde~, DC
condi ions where 5 = 0 and G = I, the stiffness of the syst~m .is
expre sed by equation (5):

/=80-1Kp(O)xo (5)
wher Xo is the base position determined by the position of the
prim ry manipulator. When Kp is a tran$fer function wfth a
large agnitu~e in.a parti~ular direction, the contact fo~ce is
large n that direction, while a small value for Kp leadsito a
small force.

IKpl < 15+SoEI for all CrJE(O""O) (9)

One important class of manipulations places the robot in
contact with a very rigid environment. Equations (7), (8), and
(9) show that the system is always stable if E is very "large" in
the singular value sense and So ~ O. In this case, the gain of the
feedback compensator Kp can be chosen to b,~ large enough to
guarantee stability. Note that, in practice, Kp cannot be
chosen as an integrator because an integrator has an infinite
magnitude at DC which leads to saturation and un-
boundedness of the contact force when an inl'initely rigid con-
straint is imposed on a servo system.

When the environment is infinitely rigid, a large stability
range gives the designer freedom to shape the force function
without being confined by the stability condition. This is the
advantage of this compliance control method in comparison
with methods that use force sensors.

5 S ability
In his section, a sufficient stability condition is given fOT

the cl sed-loop system shown in Fig. 4. By satisfying this con-
ditio ,the designer can select the appropriate compensator Kp
whic guarantees system stability and develops compliancy as
defin d by either equality (3) and (4). The Multivariable Nyqu-
ist Cr terion is used to derive the stability condition in Appendix
A. T e sufficient condition for stability condition for stability
is giv n by inequality (6).

umax(GKp) $ umin (sI + SoE) for all (;)1:(0,0)) (6)

or by more conservative condition in inequality (7):

Jmax( p):S j
°max (G)omax(sI + So£)-

wher °max indicates the maximum singular values of a matrix.
The bove condition guarantees stability of the robot when it
is in ontact with the environment. If the compensator Kp
does ot satisfy this condition, no conclusion can be made
abou -the system stability. When n = I, tbe sufficient c~ndi-
tion f r stability is given by inequality (8).

IGKpl<ls+So£1 forall~(O,~) (8)
Since G"" 1 within (0""0)' where "'0 is thc velocity cont~oller
band idth, the sufficient condition is:

for all ",£:(0,00) (7)
6 An Experimental Prototype Activt~ End-Effector
and Its Dynamic Model

To verify the applicability of this control method, a two-
degree-of-freedom active end-effector is mounted on an in-
dustrial robot to generate redundancy in the robot's degrees of
freedom. Several experiments are present(:d to verify the
theory developed in the previous sections. TJle device utilized
for these experiments is a planar, five-bar linkage [5] which is
driven by two direct drive, brushless DC motors (Moog Inc.,
Model 303-002). Both of the active end-eff.ector motors are
fixed to the last link of the primary manipulator (Fig. 5). Two
PWM amplifiers (Moog Inc., 152-200 Series) interface the
motors to the analog velocity controllers. An IBM/AT
microcomputer is the main controller providing the compen-
sator Kp.

Figure 6 shows the active end-effector mechanism where the
endpoint can be moved in a planar space via two motors. The
end-effector operates in the neighborhood of the configura-
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Fig. 7 The experiment and simulation of the first motor's closed-loop
velocity transfer function, G' 1 (s)

-, 1 10 Hz 100 1000

Fig. 8 The experiment and simulation of the second motor's closed-
loop velocity transfer function, G' 2(S)

To Computer and Oscilloscope £OJ' Measurements

Velocity
Signal

-
~~-
MOTOR 1

MOTOR 2Velocity
Signal

tion shown in Fig. 6, where all the links are orthogonal to each
other. In this configuration, both the Inertia matrix and the
Jacobian matrix are constant and diagonal. This leads to an
uncoupled dynamic equation for the active end-effector at its
nominal configuration, enabling motor I to move the end-
point in the XI direction and motor 2 to move the endpoint in
the X2 direction.

The control analysis in previous sections requires a velocity
controller as the lowest level of control. Since the dynamic
behavior of the active end-effector is uncoupled in its nominal
configuration, separate control loops are needed for each
motor. Motor I drives the endpoint in the normal direction
while motor 2 drives the endpoint in the tangential direction.
The Jacobian matrix relating the smaIl perturbations of 8J and
82 to the perturbations of XI andx2 is given by.the following
equation [5].

Rotating
Mass

x24-
tangentialdirection ,

x 1

normal
direction

Fig. 9 The experimental apparatus for measuring the sensitivity
transfer function

-1.768

0

0

-0.906
(10)

J=

(.
Using engineering data (inductance and resistance, shaft and
links moments of inertia, and torque constants for the servo
motors), the theoretical closed-loop transfer function for each
motor is derived in equations (11) and (12). The choice of
compensators in the development of the closed-loop velocity
controller is not of importance in this analysis. However, these
compensators are designed so that the output velocity follows
the input command as fast as possible while the system re-
mains stable in the presence of all unmodeled dynamics. These
transfer functions are called G' 1 (s) and G' 2 (s) because they
are calculated and measured in the joint angle space. Using the
Jacobian in equation (10) results in equations (11) and (12)
which present the closed-loop velocity in the global coordinate
frame.

where:
ViOl and Vin2: the input velocity command for each motor
shaft in Volts; VOUII and Voul2: the output voltage representing
the angular velocity of each motc,r shaft. One volt of
tachometer output represents 0.0191 rad/s of the shaft
angular velocity.

The closed-loop transfer functions (11) and (12) are verified
experimentally in the frequency domaill. Figures 7 and 8 show
the theoretical and experimental Bode plots of the closed-loop
velocity transfer functions for both motors. -

The theoretical sensitivity transfer functions for motors 1
and 2 are derived in equations (13) and (14) using the data
from the engineering drawings. The notations S' 01 (s) and
S' 02 (s) represent the sensitivity in the joint coordinate frame
as opposed to SOl (s) and S02 (s) in the global Cartesian coor-
dinate frame. Later, the Jacobian of equation (10) will be used
to arrive at the sensitivity functions in global coordinate
frame.

Voutl

Viol
=0.818a'l (s) =

(iM +1) ~ )Volts (11)

(-c)64":i8
+ 1) (-/;m +

~u~0'2(S) = = 1.346

(~ +1) Volts
Volts

(12)Ix
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(fad S
x "lbf i"il (13)

82

T,S'O2~S)=

(14)

Note that XOI and XO2 are the inputs to the sys:tem and the con-
tact forces, II andf2, applied on the environment by the active
end-effector are the outputs of the system. By assigning dif-
ferent position commands to the base of the active end-
effector and by maintaining complete control on KpI and Kp2
in equation (17), a designer can keep the contact forces in a
desired range. Also note that the active end-effector behaves
like a system that accepts a set of positions as inputs and
reflects a set of forces as output. This is a fundamental

E
"-
.c,
u
(lJ
(/)

"0
10
~

1=

-(D

where:

S' 01 (s) and S' 02 (s): closed-loop sensitivity transfer functions
from the external torques, T], and, T 2 to the angular velo-
city, 81 and 82,

81 and 82: the velocity developed on the ith motor
T] and T2: the external torque applied on the ith motor shaft.

To verify experimentally the sensitivity of the closed-loop
velocity control system to external torques (equations (13) and
(14», the apparatus in Fig. 9 is used. An eccentric mass is
mounted on the tool bit. The input excitation is supplied by
the rotation of this mass. The rotation of the mass generates a
sinusoidal torque disturbance at the corresponding motor
shaft with a frequency equal to the frequency of the rotation
of the mass. Figures 10 and 11 show the Bode plots of the
theoretical and experimental sensitivity transfer functions.

7 Compensator Design

After the closed-loop velocity transfer functions and the
sensitivity transfer functions are determined, the position
compensators, Kpl and Kp2' for each motor are desi~ned.
Since the active end-effector is used with a very hard envIron-
ment, the system is stable for a wide selection of Kpl and Kp2'
in accQrdance with the results given in section 5. Kpl and Kp2
are chosen using equations (IS) and (16).

Is.
-+
1.5

Kpl (S) = 30 (15)

--:--=-+
s 1 10 Hz 100 1000

Fig. 10 Sensitivity transfer function for motor 1, 5'01(5)

+1
Kp2 (s) = 50.2 ---

(16)
s

~+1
6

The,choice of Kpl and Kp2 depends on the desired system
impedance as defined in equation (4). The selection of a
specific Kpl and Kp2 enables the designer to shape the
magnitude and bandwidth of the active end-effector im-
pedance. The transfer functions in equations (15) and (16), for
example, yield a flat impedance equation (4) for a wide fre-
quency range.

When the base of the active end-effector is moved by Xo
toward the environment in the global coordinate frame, the
contact forces (equation 4), are equal to that given by equation
(17): I

f s+G1Kpl x and /2 =
01

1 = SOl (17) 1 10 Hz 100 1000

Fig. 11 Sensitivity transfer function for motor 2, 5'02(5)
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Fig. 13 Endpoint sensitivity (1/impedanCE') in the tangential direction
(second motor)

characteristic of impedance control which differentiates it
from admittance control. Equation (17) will be verified ex-
perimentally in both directions. The frequency response ex-
periment must be carried out by imposing sinusoidal input
positions on the end-effector when it is in contact with a rigid
wall. This requires the precise position of the active end-
effector base, XOI and XO2' However, it is possible to verify
equation (17) with a more convenient method when the active
end-effector is not in contact with any environment.

When the active end-effector is not in contact with its en-
vironment, the relationship between the external force, d, and
the endpoint position of the active end-effector, x, in the
global Cartesian coordinate frame is given by equation (18).
(This is the closed-loop positioning controller sensitivity.)

to external forces (equation (19» i:; measured rather than
measuring the system impedance in constrained maneuvers
(equation (17». In general, for linear systems, the impedance
function is equal to the inverse of the sensitivity function. For
the experimental set-up (Fig. 9), the following transfer func-
tions give the sensitivity of each motor:

ej 8'01 (s)

Tl s+ G1 (S)Kpl (S)

and

(20)

where (J. and (J2 are the small anguJlar perturbations of the
motor shafts in the neighhorhood of their nominal positions
and T1 and T 2 are the imposed torques at each motor shaft.
Using the Jacobian (equation 10) results in the following equa-
tions:

XI =(-1.768)2~

x= (s I+G Kp)-ISod (18)

Since the active end-effector is dynamically uncoupled around
its nominal position, equation (18) (in each direction)
becomes:

d.

T(

(19)SOldXl = S+GtKpi SO2 d2
X2= s+G2Kp2

S'm(S)
=(-1.768)2

( in
)(s+ O( (s)Kp( ~S)"") llif (21)

where:
dl and d2: the input excitation force applied at the endpoint of

the active end-effector along the Xl and X2 directions. (lbf)
X I and X2: the translational displacement of the active end-

effector's endpoint from its nominal position (in)

X2

Comparing equations (17) and (19) reveals that, for measur-
ing (s+G1Kpl)/SOI and (s+G2Kpv/S02 (given by equation
(17», one can use the same experimental set-up (Fig. 9)
employed to measure the closed-loop sensitivity,
SOI/(S+ G1Kpl) and S02/(S+ G2Kpv (given by equation (19».
In other words, the closed-loop system sensitivity in response

(~),
,I If x
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12 Salisbury, K. J., "Active Stiffness Control of a Manipulator in Cartesian
Coordinates," IEEE Conference on Decision and Conl:rol, Albuquerque, New
Mexico, Dec. 1980.

13 Whitney, D. E., "Force-Feedback Control of Manipulator Fine Mo-
tions," ASME JOURNAl OF DYNAMIC SYSTEMS, MEASUI~MENTS AND CONTROL,
June 1977.

14 Whitney, D. E., "Historical Perspective and State of the Art in Robot
Force Control," Proceedings of the IEEE, International Conference on
Robotics and Automation, St. Louis, MI, 1985.
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Torque Control," IEEE Conference on Decision and Control, Albuquerque,
New Mexico, Dec. 1980.

Summary and Conclusion

Tpis paper describes a control method for development of
co~pliant motion without using any force sensors. This con-
trolimethod benefits from redundancy in the robot degrees of
freedom: the extra degrees of freedom in a particular robotic
syst~m can impose forces on the environment. The stability of
the ~ystem and the environment is studied and a sufficient con-
diti4n for stability is derived.

APPENDIX A
The objective here is to find a sufficiern~ condition far the

stability of the closed-loop system shown in Fig. 4 by using the
Multivariable Nyquist Criterion [8]. Equation (AI) can be
derived from Fig. 4:

x=-(sI+SoE+GKp)-ISoE;co (AI)
If Kp = 0, the block diagram shown in Fig. Al reduces to the

system in Fig. 3, which is a stable velocit:y-controlled active
end-effector in contact with its environment.

Assume the following conditions are satiisfied:

I) The closed-loop system in Fig. Al is stable if Kp = O. This
condition simply states the stability of the system in Fig. 3.

2) Kp is a stable linear transfer function matrix. This im-
plies that the number of unstable poles of (.5..-1)/ + SoB + GKp
should be equal to the number of 1Jlllstable poles of
(s-I)/ + SoB.

3) The number of poles on the ft" axis of loops
(s-I)/ +SoE + GKp and (s-l)/ +SoE are equal. This condi-
tion states that Kp should not have any pole on the}", axis.

Since the system in Fig. Al is stable when Kp = 0, deriving a
sufficient condition for stability of the closed-loop system re-
quires investigation of the influence of GKp. According to the
Nyquist Criterion, the system in Fig. Al remains stable if the
clockwise encirclement of det(sI + SoB + OK p) around the
center of the s-plane is equal to the number of unstable poles
of the loop transfer function (s-I)/ +SoE-+- GKp. Taking into
account conditions I, 2, and 3 for the stability of the closed-
loop system, det(s/ + SoB + GKp) must hav<: the same number
of encirclements around the center of the s-plane that
det(s/+SoE) has. This is true because det(s/-soE+GKp)
and det(s/ + SoB) have the same number of unstable poles. A
sufficient condition which guarantees th,~ equality of the
number of encirclements of det(s/ + SoB + GKp) and
det (sI+ SoE) is that the det(sI+SoE+GJ(p) does not pass
through the origin of the s-plane for all possible non-zero
finite values of Kp or:
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det(s/+SoE+GKp);cO for all C&1e(O,(X) (A2)
(KUmax p) oS 1 \fi-'}

A sufficient condition that guarantees the above inequality Umax ( (s/ + SoE) -G)

and for systems with one degree of f]reedom (n= I), the suffi-
(A3) cient condition for stability is given b~{:

IGKpl<ls+SoEl for all C&1e(O,(X) (AS)

for all !J)E(O,a.)

is:

amax (GKp):S amiD (sf + SoB)

or more conservatively:
for all Wf(O,(X)
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